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We investigate the process of slow intergranular crack propagation by the finite element method model and
show that branching is induced by partial arresting of a crack front owing to the geometrical randomness of
grain boundaries. A possible scenario for the branching instability of crack propagation in a disordered con-
tinuous medium is also discussed.

DOI: 10.1103/PhysRevE.71.055102 PACS numberssd: 62.20.Mk, 81.40.Np, 46.50.1a

The morphology of cracks has been the subject of inten-
sive studies in recent years. Experimental observations of the
universal roughness exponenth,0.8 of the fracture surface
f1,2g have been stimulating theoretical and numerical studies
of relevant models. Another interesting subject is the branch-
ing behavior of fast-propagating cracks: There seems to be a
dynamic branching instability that is common in various
kinds of amorphous materialsf3g, and this branching insta-
bility has been numerically reproducedf4,5g. In the brittle
fracture of gels, a different kind of branching has been ob-
servedf6g.

Branching is also observed in slowly propagating cracks
such as intergranular stress corrosion crackingsIGSCCd,
which occurs when a polycrystalline metal or alloy is sub-
jected to both tensile stress and a corrosive environmentsSee
Fig. 1d, such as nuclear reactor coolantsirradiated waterd.
The corrosive agent selectively corrodes the grain boundary
sGBd near the crack tip, which is under tensile stress, and the
crack propagates along the GBs exhibiting typical branching
patterns. Empirical relations between the mode-I stress inten-
sity factorKI at the crack tip and crack propagation velocity
v is used to assess the safety of structural materials, and they
usually take power-law formv=CsKI −KIcda, whereC anda
are parameters that depend both on material and environ-
ment, andKIc is a critical value ofKI at which the crack
begins to propagate. The typical velocity of crack propaga-
tion of IGSCC under an industrial environment is of the
order 0.1 to 1 mm per year.

Naively, the branching of intergranular cracking may
seem obvious because there are numerous GB triple junc-
tions where a crack front has a chance to branch, but in
reality, it is not so simple: If a branch occurred at a triple
junction, the stress concentrates on the longer branch and
thus enhances its propagation, screening the stress of shorter
branch, eventually suppressing its propagation before it
grows to a length compatible with the GB length. In the
present paper, we model the intergranular crack propagation
process and carry out numerical simulations, and show that
the branching occurs even when the explicit branching at GB
triple junctions is forbidden.

At the first stage of the simulation, polycrystalline GBs
are prepared using random Voronoi tessellationf7g of a cube

of dimensionless size 1.031.031.0, and a crack is assumed
to propagate through these GBs. In this paper, 12 000 grains
are used. Tensile stress along they axisssee Fig. 2d is applied
as constant loads on they=0 andy=1 plane of the cube, and
local stress distributionsby which the crack is drivend is
calculated using a simplified finite-element-methodsFEMd
model. The FEM nodes are placed at vertices of grains, cen-
ters of GB surfaces, and centers of grains. Each grain is
decomposed into tetrahedral FEM elements, which contain
two vertex nodes, one surface center node, and one grain
center nodesFig. 3sadd. To glue the grains together, a very
thin FEM element is placed at each GB, which is made up of
six-node triangular elementssFig. 3sbdd. The thickness of this
gluing element is set to 10−4. When a GB fails, the elastic
constants of the corresponding gluing element are set to zero.
To enhance the stress concentration at the crack tip, the ini-
tial crack is prepared by separating all the GBs between two
grains whose grain centers are above and below a planey
=0.5 and lie in a regionz,0.2. The crack then proceeds in
the z direction.

The most crucial and difficult part of this kind of model-
ing studies is a determination of the crack propagation rule.
In this paper, a certain GB is selected based on the stress
distribution, and is separated completely. Therefore the GBs
fail one at a time, which is similar to the rule employed in
the so-called network models, such as random fuse models

FIG. 1. Schematic depiction of intergranular stress corrosion
cracking. A corrosive agent diffuses through the opened crack and
corrodes grain boundaries under tensile stress.
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f8g and random spring modelsf9g. Although the validity of
this rule for the simulation of intergranular cracking is quite
unclear because the nearby stress distribution may change
significantly while the crack front proceeds through the se-
lected GB and may initiate another GB failure, there are two
reasons why we employ this rule. Firstly, to track the con-
tinuous propagation of the crack front along a GB requires
very fine FEM meshing around the crack tip, or alternatively,
the FEM mesh must be reorganized around the crack tip each
time the crack proceeds by a small amount. Both methods
require extensive computational power and a fairly complex
simulation code, and the number of grains will be severely
restricted. Secondly, it is plausible to assume that the crack
front is arrested at the triple junctions of GBs for a long time;
thus the propagation process may be treated as a series of
discrete events of GB failure.

The rule to determine which GB to separate is that we
choose a GB on which the strongest tensile stress normal to
its surface is imposed. Considering that the stress diverges

near the crack tip asKIr
−1/2 in the linear elastic theory, where

r is a distance to the crack tip andKI is a mode-I stress
intensity factor, we choose among the GBs that are adjacent
to the crack tip. In the present model, the crack tip is defined
as a set of GB triple junctions that is shared by one fractured
and two unfractured GBs. This restriction forbids explicit
branching at triple junctions, as well as isolated crack initia-
tion in the unfractured interior, and distinguishes the present
model from the network models that are mainly used to
study crack morphology. After the selected GB fails, the
elastic matrix is updated and the fracture process is repeated.

Local stress is calculated by standard linear elastic theory
f10g. Since only the linear theory is used in the present paper,
one can arbitrarily scale the stress and strain. We set Young’s
modulusE to unity and assume the elastic properties to be
isotropic; therefore the only elastic parameter to be consid-
ered is Poisson’s ration, and simulations are carried out for
several values ofn. To evaluate the tensile stress acting on a
GB, a normal component of a difference of displacements
between two nodes that lie on both sides of the gluing ele-
ment is calculated at each vertex of a GB. Here we only
investigate vertices on the crack tip, where maximum of ten-
sile stress occurs. The FEM mesh we use is very coarse
compared to engineering studies, in which progressively
finer mesh is used around the crack tip. However, the main
concern in the engineering studies is to evaluate precisely a
stress intensity factor at the crack tip and to determine
whether it is greater than the critical value above which the
crack propagates catastrophically. Therefore, in these studies,
the initial crack is usually assumed to be a semicircular mi-
crocrack and the propagation process is not studied.

There have been several numerical studies of intergranu-
lar crack propagation in which some simplifying approxima-
tions are used, such as redistributing the stress of a failed
surface equally to the neighbor surfacesf11g. The present
paper simulates and evaluates intergranular cracking process
with full geometrical modeling of three-dimensional grain
boundaries and evaluates an approximate local stress fieldsif
cruded by which crack is driven. A system of linear equations
has been solved using the BiCG-stabsbi-conjugate gradient
stabilizedd iterative solver. The dimension of the vector was
about 1 500 000, and the number of nonzero elements of the

FIG. 2. Geometry of a simulation cell. An initial crack is placed
at a regiony,0.5, z,0.2 and constant load is imposed on the
uppersy=1d and lowersy=0d surface of the cube.

FIG. 3. Construction of FEM elements.sad Nodes are placed at
vertex, face center, and body center of each grain.sbd Each grain is
glued together by thin triangular elements.

FIG. 4. Fractured surface observed in the simulation ofn=0.2
case, projected onto theX−Z plane. The black and gray areas show
the fracture surface and branch fracture surface, respectively. The
cross section of the fracture surface in the centersbold white lined is
shown on the right side.
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symmetric elastic matrix was about 28 000 00032 in the
case of 12 000 grains. Most of the CPU time of the simula-
tion was spent in the solver routine, which has been vector-
ized and run on a NEC SX-6 vector processor. The overall
CPU time needed to carry out 1500 steps of GB fracture was
about 6 h.

Figure 4 shows fracture surface projected onto theX-Z
plane, obtained from the simulation of then=0.25 case: the
black area shows the fracture surface, and the light gray ar-
eas show the branched fracture surfaces. In this case more
than 20 percent of the fracture surface areasprojected onto
the X-Z planed is covered by the branched surface, even
though explicit branching at GB triple junctions is forbidden.
Figure 5 shows convergence of the ratio of the branch sur-
face plotted against the projected fracture surface area for the
three typical cases ofn=0.0 sspongyd, n=0.25 sa typical
value of metalsd, andn=0.49srubberyd. It can be seen that in
each case the ratio converges to a value 0.2–0.3, and the
branching behavior does not vary drastically, even in the
extreme cases ofn=0.0 andn=0.49.

Figure 6 schematically depicts the typical branching
mechanism observed in the simulation:sad the crack front is
arrested at the sloped surfaceS0, where mode-I stress is
reduced by a factor of cosu whereu is the inclination angle
of S0 out of theX-Z plane.sbd The crack initiates at the point
v and propagates along the much horizontal surfaceS1, and
intersects the fracture surface at the segmentL0. After this

kind of branch is formed, the branched crack front circum-
vents the arresting GB and continues propagation, and even-
tually merges again to resume intact the crack front line and
leaves a branch behind that consists of several GBs. Al-
though the branch length is only of an order of several GBs,
so frequent a branching, as observed in this simulation, will
significantly affect the crack propagation velocity if we
would construct a time-driven crack propagation rule and
simulate it. As for the long-length scale properties of the
fracture surface, an estimate of roughness exponent is of in-
terest, but the obtained fracture surface, which consists of

FIG. 5. Ratios of branch surface area plotted against the pro-
jected fracture surface area for several values of Poisson’s ration.

FIG. 6. Schematic depiction of the typical crack branching pro-
cess observed in the simulation:sad just before the branching,sbd
just after the branching. See the main text for details.

FIG. 7. Schematic picture of humping of crack front propagat-
ing in an inhomogeneous medium

FIG. 8. Schematic picture of the crack branching process ex-
pected in a disordered continuous medium. Bold solid lines and
bold dotted lines are the crack tip and crack tip under the fracture
surface, respectively. The dashed line denotes the triple junction of
fracture surface. See the main text for details.
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about 1500 GBs, is not large enough to observe such quan-
tities.

So far, we have shown that in intergranular crack propa-
gation, branching frequently occurs owing to the partial ar-
resting of crack front. Here we infer that this branching be-
havior may also occur in more general cases of crack
propagation in a disordered continuous medium, under some
modest assumptions. First, we assume that the crack propa-
gation velocityv mainly and strongly depends onKI, that is,
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For example, a power-law functionv=fKI
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2ga/2 satisfies these conditions whene!1 anda@1. Sec-

ondly, local mode-II stress is assumed to change the crack
propagation direction out of the current crack plane so that
the mode-I stress normal to the plane increases.

Now consider a straight crack front propagating in an in-
homogeneous continuous medium. When the front crosses a
small region where mode-II stress is locally induced by in-
homogeneous elastic properties, a hump along the vertical
direction is generatedsFig. 7d. This hump will be eventually
lowered owing to the interactions between crack front seg-
ments, if the propagating velocity of each crack front seg-
ment does not vary strongly. But the sloped segment feels
smaller mode-I stresssby a factor of cosu, whereu is an
inclination angle of the segmentd and its propagating velocity
becomes much smaller, say, by a factor of cosa u. This effect
may be compensated to some degree, because mode-I stress
concentrates on a segment lagged behind. If this compensa-
tion is not sufficient, branching of the crack front can occur
through a mechanism described below and shown in Fig. 8:
sad The sloped section is lagged behind, owing to the weak

mode-I stress at the crack front.sbd The left- and the right-
side of the segment bulge inward.scd The bulged segments
further proceed and eventually overlap each other. Then one
part shields the stress and continues to proceed, while the
other slows down.sdd Owing to mode-II stress induced by
the interaction between the crack front segments of over-
lapped parts, each part gets closer and eventually intersects.
sed Here a segment of the triple junction, or a root of a
branch, is formed.sfd A branched “tongue” is left behind and
the crack frontsnow intactd proceeds further. In this way,
many small branches are left behind the sweeping crack front
also in continuum case.

In summary, we have modeled and simulated slow inter-
granular crack propagation, and found that branching of a
crack frequently occurs even if explicit branching at grain
boundary triple junctions is forbidden. In real intergranular
fracture, random crystallographic anisotropy of the elasticity
of each grain produces inhomogeneous stress distribution
f12g and will enhance crack arresting that leads to more fre-
quent branching. In addition, in the case of polycrystalline
metals, a certain portion of GBs are small-angle grain bound-
aries that are very resistant to fracture and corrosion. Thus,
there are numerous arresting GBs and the branching may be
strongly enhanced, as observed in IGSCC. We have also in-
ferred that the crack branching mechanism observed in the
simulation of the discrete model may occur in more general
cases of crack propagation in a disordered continuous me-
dium, under some modest assumptions on the relation be-
tween crack propagation velocity and stress intensity factors.
A direct numerical simulation of this continuum case is ex-
pected.
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